

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Python-Git

Automate the boring git stuff with python

Motivation

Whenever I wanted to see the status of all my git repos I have to fire up the
git-cmd.exe shell on windows, navigate to each folder and then do a git status.
I have to do this both at home and at work.

But I got quickly tired of it. So I decided to make this tool to give me a quick
report so I can see what is ahead and what’s behind and what’s ahead at a glance.
In short, what needs attention so as to avoid those troubling merge conflicts.

Requirements

Other thing you need is a computer with git either accessible from the command line (which means its in your system path) or as a standalone file somewhere in your system.
If you’re working without installation rights, you can use a portable git and python-git will work just fine.

You can get a portable git version from here [https://git-scm.com/download/win]

Just unzip it and place it somewhere on your disk. Later (during initialization), you’ll need to tell python-git where this file is located.

Installation

 pip install python-git

Setup

After installation, an initial setup is required to tell pygit the folders it needs to work with. Open a terminal and python -m pygit the below line with appropriate command line arguments.

The output of python -m pygit --help is shown below.

usage: Pygit. Initialize working directories for python-git
 [-h] [-v {0,1}] [-r RULES [RULES ...]] [-g GITPATH]
 [-m MASTERDIRECTORY] [-s SIMPLEDIRECTORY [SIMPLEDIRECTORY ...]]

optional arguments:
 -h, --help show this help message and exit
 -v {0,1}, --verbosity {0,1}
 turn verbosity ON/OFF
 -r RULES [RULES ...], --rules RULES [RULES ...]
 Set a list of string patterns for folders to skip
 during setup
 -g GITPATH, --gitPath GITPATH
 Full pathname to git executable. cmd or bash.
 -m MASTERDIRECTORY, --masterDirectory MASTERDIRECTORY
 Full pathname to directory holding any number of git
 repos.
 -s SIMPLEDIRECTORY [SIMPLEDIRECTORY ...], --simpleDirectory SIMPLEDIRECTORY [SIMPLEDIRECTORY ...]
 A list of full pathnames to any number of individual
 git repos.

As an example you I have a folder in my D: drive that holds all my git repos, so I will setup pygit with the following command

 python -m pygit --m D:\git -v 1

If it happens that you clone more repos into your master directory, you may update the index by issuing the update()command inside a python shell.

 pygit.update()

Usage

Activate python environment on command line.

 import pygit

In case things change (perhaps you moved folders around or you add a new git repo) and you want to reset your folders just redo the initialization step

 pygit.repos()

show all git repos in the format shown immediately below

 pygit.load(repo_id_or_name) # load a repo

where repo_id is a string-valued id assigned to that particular repo. The first value in the repos command’s output.

The load(input_string) command returns a Commands object for that repo, which provides a gateway for issuing git commands on the repository

Operations that can be performed on Commands object are shown below.

 r = pygit.load_repo(repo_id_or_name)
 r.fetch() # perform fetch
 r.status() # see status
 r.add_all() # stage all changes for commit
 r.commit(message='chore: minor changes') # commit changes. Press enter to accept default message
 r.push() # perform push action
 r.pull() # perform pull request
 r.add_commit() # add and commit at once

Batch Operations

The following batch operations on indexed repos are available.

 pygit.load_multiple(*args) # load a set of repos
 pygit.load_multiple("2", "5") # load only repo 2 and 5

returns a generator of Commands objects for repositories 2 and 5. Afterwards you can iterate over the repos like below

 for each in pygit.load_multiple("2", "5"):
 each.add_commit()

 pygit.all_status()

performs a status command on all indexed repos. The result is written to a markdown file.
Carries a timestamp of the time the command was issued. Call it a snapshot of your repo status if you will. Items which are out of sync with their remote counterpart are also highlighted as needing attention.

 pygit.pull_all()

perform a pull request on all indexed repos at once. It returns None.

 pygit.push_all()

performs a push action on all indexed repos at once. It returns None.

 pygit.load_all()

returns a generator of Commands object for each indexed repo.

To do

	Add git-bash.exe

	Implement Commands.branch()

	Refactor tests

	Auto-run test after importation to make sure every other thing works fine.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

